8.2 Notes
Pythagorean Theorem and Its Converse

Learning Goal: I can use the Pythagorean Theorem and its converse to solve for missing side lengths on right triangles.

Pythagorean Theorem

Theorem 8.4 Pythagorean Theorem

Words: In a right triangle, the sum of the squares of the lengths of the legs is equal to the square of the length of the hypotenuse.

Symbols: If \(\triangle ABC \) is a right triangle with right angle \(C \), then

Example 1

Find the missing side length.

Example 2

Find the missing length on the Pythagorean Triples below.

Pythagorean Triples

Pythagorean Triple:
Real World Applications

1. A 20-foot ladder is placed against a building to reach a window that is 16 feet above the ground. How many feet away from the building is the bottom of the ladder?

2. A 10-foot ladder is placed against a building. The base of the ladder is 6 feet from the building. How high does the ladder reach on the building?

Pythagorean Theorem Converse and Inequality Theorems
Example 3

9, 12, and 15 can are the measures of the sides of a triangle. Classify the triangle as acute, right, or obtuse.

7, 8, and 14 can are the measures of the sides of a triangle. Classify the triangle as acute, right, or obtuse.

10, 11, and 13 can are the measures of the sides of a triangle. Classify the triangle as acute, right, or obtuse.
8.3 Notes
Special Right Triangles

Learning Goals:
I can use the properties of 45°-45°-90° triangles.
I can use the properties of 30°-60°-90° triangles.

45°-45°-90° Triangles

Theorem 8.8 45°-45°-90° Triangle Theorem

In a 45°-45°-90° triangle, the legs ℓ are congruent and the
length of the hypotenuse h is $\sqrt{2}$ times the length of a leg.

Symbols
In a 45°-45°-90° triangle

Example 1 – Finding the hypotenuse
Find x.

Example 2 – Finding the legs
Find a.

Find b.
Theorem 8.9 30°-60°-90° Triangle Theorem

In a 30°-60°-90° triangle, the length of the hypotenuse h is 2 times the length of the shorter leg s, and the length of the longer leg l is $\sqrt{3}$ times the length of the shorter leg.

Symbols In a 30°-60°-90° triangle,

Example 3

Find x and y.

Example 4

Shaina designed 2 identical bookends according to the diagram below. Use special triangles to find the height of the bookends.